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A B S T R A C T

Powdery mildew (PM) is a serious fungal disease of legumes. To gain novel insights into PM pathogenesis and
host resistance/susceptibility, we used dual RNA-Seq to simultaneously capture host and pathogen tran-
scriptomes at 1 d post-inoculation of resistant and susceptible Medicago truncatula genotypes with the PM
Erysiphe pisi (Ep). Differential expression analysis indicates that R-gene mediated resistance against Ep involves
extensive transcriptional reprogramming. Functional enrichment of differentially expressed host genes and in
silico analysis of co-regulated promoters suggests that amplification of PTI, activation of the JA/ET signaling
network, and regulation of growth-defense balance correlate with resistance. In contrast, processes that favor
biotrophy, including suppression of defense signaling and programmed cell death, and weaker cell wall defenses
are important susceptibility factors. Lastly, Ep effector candidates and genes with known/putative virulence
functions were identified, representing a valuable resource that can be leveraged to improve our understanding
of legume-PM interactions.

1. Introduction

Powdery mildew fungi are obligate biotrophic pathogens that infect
a wide variety of crops, including legumes [1], which represent a major
component of food crops consumed worldwide. The disease causes
significant yield losses in several legumes such as pea [2], lentils [3]
and mung bean [4]. The most widely documented powdery mildew
(PM) on pea is Erysiphe pisi (Ep), which, like other PMs, exclusively
infects the host epidermal cell with well-defined stages of infection [5].
Early infection stages include germination of the conidia (1–2 h post-
inoculation (hpi)), multi-lobed appressorium formation (3–6 hpi), epi-
dermal cell penetration (6–18 hpi), and development of the primary
haustorium, the feeding structure (by 24 hpi). Later infection stages
include the formation of surficial mycelial networks and secondary
haustoria followed by asexual reproduction at 5 days post-inoculation
(dpi). Being an obligate biotroph, the fungus modulates cellular

architecture and metabolism of living host cells to divert nutrients for
its growth and reproduction while limiting host defense responses, in-
cluding cell death [6].

Investigations into the genetic and molecular mechanisms of PM
resistance have primarily focused on the model dicot Arabidopsis and
monocots, barley and wheat. These studies have demonstrated that
plants have evolved multiple, distinct, and often host-specific strategies
to counter the pathogen [7–13]. In contrast, mechanisms of PM re-
sistance in legumes are relatively underexplored. To date, only two
recessive (er1 and er2) and one dominant (Er3) genes with a role in PM
resistance have been characterized in pea [2]. Although er1 is ex-
tensively used in breeding programs, the durability of resistance is of
concern since a breakdown in resistance via pathogen counter-evolu-
tion has already been reported [14]. Therefore, there is a need to
identify new sources of resistance to PM in pea. The diploid legume
Medicago truncatula (Mt, barrel medic) is a valuable resource for
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investigating the molecular mechanisms governing various aspects of
legume biology [15] since it has all the attributes of a model plant,
including a sequenced genome [16]. Incidentally, Ep can infect Mt, and
accessions with varying degrees of susceptibility have been used to
identify new sources of PM resistance. So far, two resistance QTLs [17],
and a dominant resistance gene (MtREP1) have been identified [18];
however, the molecular mechanisms of resistance have not yet been
uncovered.

Pathogen recognition is an important aspect of plant immunity and
is mediated by cell surface pattern-recognition receptors (PRRs) and
intracellular nucleotide-binding domain LRR-domain containing re-
ceptor (NLR or R) proteins. Receptor-like kinases (RLKs) function as
PRRs, which recognize diverse pathogen-associated molecular patterns
(PAMPs) or damage-associated molecular patterns (DAMPs) to initiate
PAMP-triggered immunity (PTI) [19,20]. To suppress PTI and promote
infection, pathogens secrete virulence proteins termed effectors into
host cells [21], which leads to effector-triggered susceptibility. How-
ever, some of these effectors are recognized either directly or indirectly
by host R proteins, resulting in effector-triggered immunity (ETI)
[22,23]. Since effectors play key roles in determining the outcome of
plant-pathogen interactions their identification is equally integral to
improving our understanding of the disease. The genome sequence of
Ep is currently available as a draft assembly of 69.26 Mbp [24]. This
resource combined with expression analysis can provide insights into
the pathogenicity determinants in this species. This has been demon-
strated for PMs such as Blumeria graminis f.sp. hordei (Bgh) [25], Golo-
vinomyces orontii [26], Erysiphe necator [27], Podosphaera xanthii [28],
and more recently for Ep [29].

Genome-wide gene expression profiling presents a global view of
the genes and functional pathways that are impacted during disease
development and has been successfully used to obtain valuable insights
into the molecular mechanisms of resistance. Transcriptomic studies
were previously performed on the Mt-Ep pathosystem using different
combinations of pathogen isolates and host genotypes and different
microarray platforms [30–32]. However, these studies only profiled
changes in host gene expression, and except for one 16 K oligo array
study, were all performed on cDNA arrays spotted with limited sets of
user-selected genes (1 or 6 K arrays). We posit that the limited number
of genes profiled in these studies combined with the incomplete an-
notation of the Mt genome available at the time would have prevented
the capture of comprehensive, genome-wide changes in gene expression
during Ep infection. RNA-Seq has recently emerged as a powerful tool to
study global changes in expression during host-pathogen interactions as
it provides an unbiased, discovery-based expression profiling that is
more sensitive than microarrays. Further, it can be used to simulta-
neously capture host and pathogen transcriptomes, a technique com-
monly referred to as ‘Dual RNA-Seq’ [33]. This method has been suc-
cessfully used to gain novel biological insights into diverse plant-
pathogen interactions [34–37].

To obtain new insights into the Ep-Mt interaction, we generated dual
RNA-Seq transcriptomic data during an early stage of Ep infection
(1 dpi) in resistant and susceptible Mt genotypes. We identified differ-
ential host transcriptional changes associated with incompatibility and
compatibility, which allowed us to uncover novel processes and com-
ponents of the Ep–Mt interaction. We also identified infection-altered
transcription factors and enriched cis-acting regulatory elements in co-
regulated promoters, which enabled us to identify putative regulators
underlying resistance and susceptibility. Lastly, we exploited the dual
transcriptome to predict novel Ep effector candidates and discuss their
potential roles as virulence factors.

2. Materials and methods

2.1. Plant growth, PM infection, and microscopy

Seeds of Mt genotypes A17 (resistant) and DZA315.16 (susceptible)

were grown and infected with a moderate inoculum of Ep isolate
Palampur-1 [38] as per [39]. To minimize plant-to-plant variation, 6
evenly spaced plants were grown within each box using a design that
alternates the placement of A17 and DZA. At 3.5 weeks, a subset of
protrays was infected with a moderate inoculum of Ep (conidia from
one and a half fully infected AzadP-3 pea leaves at 10–14 dpi per
protray) using a settling tower and mesh screen [39]. This method of
inoculation was used to enhance reproducibility from experiment to
experiment and minimize plant-to-plant variation. Two independent
biological replicate experiments were performed. From each experi-
ment, five fully expanded mature trifoliate leaves were harvested per
genotype from a total of five non-inoculated and five inoculated plants
at 1 dpi, immediately frozen in liquid nitrogen and stored at −80 °C
before RNA extraction. Two additional trifoliate leaves were harvested
from two inoculated plants of each genotype for microscopic analysis of
pathogen growth stages. To visualize fungal growth, infected leaves
were stained with trypan blue [40] and viewed under bright field using
a Zeiss PALM MicroBeam microscope. For in planta expression analysis
of candidate fungal effectors, three-week-old DZA plants were in-
oculated with Ep conidia using a brush. Infected leaf tissues (one tri-
foliate leaf each, from three independent biological replicates) were
harvested at 0, 6, 12, 24, 48, 72, and 120 hpi, immediately frozen in
liquid nitrogen and stored at −80 °C until RNA extraction.

2.2. RNA isolation, library construction, and Illumina sequencing

For each RNA-Seq sample, total RNA was isolated from 5 trifoliate
leaves using TRIzol® reagent (ThermoFisher Scientific) and treated with
DNase I (NEB) to remove genomic DNA contamination. RNA quantity
and quality was measured using an Agilent 2100 Bioanalyzer followed
by ribosomal RNA depletion using the Ribominus plant kit (Invitrogen).
Libraries were prepared from 150 ng rRNA-depleted RNA using the
Illumina TruSeq RNA Sample Preparation Kit v2 and sequenced using
Illumina HiSeq 2500 in 100 bp paired-end mode. For in planta expres-
sion analysis of candidate fungal effectors, total RNA was extracted
from frozen leaf samples using the Nucleospin RNA Plant kit
(Macherey-Nagel) with on-column DNase treatment.

2.3. Genome-guided de novo transcriptome assembly

Paired-end raw reads in FASTQ format were subjected to quality
control using the NGS QC toolkit v2.3.3 [41]. Since the Mt genome has
gaps in the assembly along with unanchored scaffolds [16], and the
available Ep genome is at scaffold level, we used genome-guided de
novo transcriptome assembly to capture the sequence variations con-
tained in our RNA-Seq samples in the form of transcripts that are de
novo reconstructed. High quality (HQ) paired-end replicate libraries of
all four samples (A17 control, A17 inoculated, DZA control, DZA in-
oculated) were mapped against the merged Mt A17 reference genome
(https://www.ncbi.nlm.nih.gov/genome/?term=Medicago) and Ep
scaffolds (https://www.mpipz.mpg.de/23693/Powdery_Mildews)
using TopHat v2.0.11 (parameters: -r 150-mate-std-dev 50) [42].
Genome-guided de novo assembly was performed using a De bruijn
graph-based ‘Trinityrnaseq-2.0.6’ Assembler [43]. Assembled tran-
scripts with length > 200 bp were ameliorated with average
depth ≥ 5 and coverage ≥70% using an in-house script [44]. 100%
identical transcripts were removed using CD-HIT-EST to generate a set
of non-redundant transcripts. The final assembly was evaluated by
mapping HQ paired-end reads to non-redundant transcripts using RSEM
[45]. The expression levels of transcripts in the individual libraries
were assessed by mapping the HQ reads to the assembled transcriptome
using Bowtie 2 [46]. The Principal Component Analysis (PCA) plot was
constructed using Scatterplot3d package in R software [47].
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2.4. Segregation and annotation of host and pathogen transcripts

To segregate host and pathogen transcripts from the mixed tran-
scriptome, blastn alignments were performed against the Mt reference
genome (query coverage ≥95%; e-value ≤1e-05) and Ep scaffolds
(query coverage ≥90%; e-value ≤1e-05). Transcripts that aligned to
both genomes were removed from further analysis. Host transcripts
were annotated by performing blastx alignments against the Mt4.0v2
protein database (http://www.medicagogenome.org/) and plant Refseq
protein database (July 2018 release; NCBI) using query coverage
≥50% and e-value ≤1e-03 as the cut-off. [48]. From the set of anno-
tated transcripts, the longest unique ones were retained. Fungal tran-
scripts that were represented by reads only in inoculated samples
or < 10 reads in uninoculated control samples were retained. Further,
since the available Ep reference genome assembly is highly fragmented,
sequences that did not align to either genome or have a plant annota-
tion, but were represented by reads only in the inoculated samples
(or < 10 reads in control samples) were added to the list of putative
fungal transcripts. For annotation of fungal transcripts, blastx align-
ments were performed on E. necator and Bgh protein databases (ftp://
ftp.ensemblgenomes.org/pub/fungi), G. orontii haustorial protein da-
tabase [26], and Ascomycete and fungal nr protein databases (NCBI).
Query coverage ≥50% and e-value ≤1e-03 was applied, and the best
hit was retained.

2.5. Analysis and functional enrichment of Mt DEGs and Ep genes

Differentially expressed genes (DEGs) between the groups were
calculated by the DESeq2 package in R version 3.2.5 [49]. The
threshold for DEGs was set as |log2 fold-change| ≥1.0 and ≤−1.0 and
p-value ≤.05. We computed both p-value and p-adjusted value as a part
of our standard analysis. To estimate the degree of biological variation
between replicates and to identify differentially expressed transcripts
with acceptable false discovery rate (FDR), we proceeded with p-value
as FDR to measure the total number of biologically meaningful DEGs
[50]. MedicMine (http://medicmine.jcvi.org/medicmine/begin.do)
and MapMan [51] were used to identify significantly enriched gene
ontology (GO) terms and pathways in the DEG datasets. REVIGO was
used to remove redundant GO terms, and the resulting non-redundant
terms were visualized in semantic similarity-based scatterplots [52].
Enriched cis-acting regulatory elements were identified in 1-kb up-
stream promoter sequences of DEGs using the ‘Regulation Prediction’
tool in PlantRegMap (v4.0) [53], and motif names were obtained from
the plant cis-acting regulatory element (PLACE) database [54]. Mt
transcription factors were identified from the DEG datasets using
PlantTFDB [53]. GO terms and InterPro domain information was ob-
tained for the fungal genes via BLAST2GO [55]. Open reading frames
(ORFs) were predicted for fungal transcripts using TransDecoder [43]
with a minimum peptide length of 50 amino acids. Protein domains
were predicted using HMMER v3.2 with Pfam 31.0 database.

2.6. Ep candidate effector prediction

ORFs containing genuine start codons were used for the prediction
of candidate effectors. Signal peptides (SP) were predicted using
SignalP3.0 and SignalP4.1 (D-score cut-off value ≥0.5) [56,57] and
subcellular localization was predicted using TargetP1.1 [58]. Proteins
with SP and predicted location “S” (secretory) were retained. The
presence of transmembrane (TM) domain(s) was predicted by the
TMHMM2.0 server [59] and proteins having no TM or TM within the SP
were retained. Lastly, proteins predicted to have a GPI modification site
via Big-Pi fungal predictor [60] were removed. ApoplastP was used to
predict localization of effector proteins to the plant apoplast [61]. Lo-
calizer was used to predict subcellular localization of effector proteins
in the plant cell [62].

2.7. Quantitative real-time PCR (qPCR) validation

First-strand cDNA was synthesized from 1 μg DNase I-treated total
RNA using iScript™ cDNA Synthesis Kit (Bio-Rad) according to the
manufacturer's instructions. qPCR was performed on cDNA samples
using either 5× HOT FIREPol® EvaGreen® qPCR mix (Solis Bio dyne) or
SYBR Premix Ex Taq II (TaKaRa) in a QuantStudio Flex 6 ABI system
(ThermoFisher Scientific) according to the manufacturer's instructions.
For quantification of MtPR10 and MtREP1, Mt ubiquitin (MtUBQ;
Medtr3g092130) served as the reference gene and fold change was
calculated using LinRegPCR (v2015.1; [63]). Estimation of the relative
abundance of plant and fungal RNA in the infected samples was per-
formed via qPCR analysis of specific Mt (AF233339.1) and Ep
(AF02842.1) internal transcribed spacer (ITS) sequences [64]. MtUBQ
served as the reference gene and relative expression was calculated
using LinRegPCR. For qPCR validation of plant and fungal genes,
MtUBQ and Ep β-tubulin 2 (Eptub2; X81961.1) served as the reference
genes, respectively, and log2 fold change values were calculated using
the comparative CT method [65]. Three technical replicates from three
independent biological replicates were processed for each sample. Pri-
mers were designed using the NCBI Primer BLAST tool (Supplementary
Table S1). Correlation analysis between RNA-Seq and qPCR expression
values was performed using Graphpad Prism (v7.02).

3. Results

3.1. Quantification of Ep growth on Mt genotypes and RNA-Seq

The Mt genotype A17 was previously reported to display complete
resistance to various isolates of Ep whereas DZA was reported to be
highly susceptible [17,30]. To test the virulence of the Ep isolate Pa-
lampur-1, we assessed fungal growth on leaf tissues of both genotypes
over the course of infection. In agreement with previous studies, we
found that A17 was highly resistant to Ep Palampur-1 with no visible
macroscopic disease symptoms at 12 dpi. The majority of the conidia
were arrested at the multi-lobed appressorium stage by 1 dpi (Fig. 1A),
and at 3 and 5 dpi, infected epidermal cells showed symptoms of hy-
persensitive response (HR)-like cell death, including cytoplasmic dis-
organization and browning [66,67]. Likewise, DZA was highly sus-
ceptible to the isolate; infected leaves were completely covered with
white powder by 12 dpi. Microscopic evaluation of infected DZA leaves
revealed that multi-lobed appressoria and primary hyphae were formed
by 1 dpi, extensive surficial hyphae by 3 dpi and asexual reproductive
structures (conidiophores) by 5 dpi (Fig. 1A).

To capture differential host responses associated with resistance/
susceptibility and identify novel Ep effector candidates, we used RNA-
Seq to simultaneously profile host and pathogen transcripts using RNA
extracted from A17 and DZA leaves harvested at 1 dpi with (inoculated)
or without (non-inoculated control) Ep challenge. We selected 1 dpi for
the transcriptome analysis in order to detect Mt and Ep genes regulated
prior to the appearance of visible HR symptoms in A17 and also those
regulated after primary haustorium (infection/feeding structure) is
fully formed in DZA. Prior to RNA-Seq, we ascertained the extent of Ep
colonization in the samples via quantification of fungal growth stages
(Fig. 1B). In A17, 0.3% of the conidia formed multi-lobed appressoria
and primary hyphae, 69% formed only multi-lobed appressoria, and
31% did not germinate. In contrast, the extent of fungal colonization
was greater in DZA; 51% of the conidia formed multi-lobed appressoria
and primary hyphae, 41% formed only appressoria, and 8% did not
germinate. This result was supported by qPCR analysis of Mt and Ep
internal transcribed spacer (ITS) sequences, which indicated that the
proportion of fungal biomass in the harvested leaf tissues of DZA was
~2.7-fold greater than in A17 (Fig. 1C). To validate the infection status
of the samples, we quantified the transcript abundance of a plant de-
fense marker, PR10. MtPR10 was induced ~160-fold in A17 and ~15-
fold in DZA (Fig. 1D), implying that although defense responses were
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activated in both genotypes, they were activated to a greater magnitude
during the incompatible interaction. Since MtREP1 was previously
identified as one of the R genes responsible for PM resistance in A17
[18], we checked whether the observed differences in PM phenotypes
of A17 and DZA correlated with differences in basal expression of
MtREP1. MtREP1 was constitutively expressed in uninoculated A17
samples whereas no transcripts were detected in DZA (Fig. 1E).

Keeping in mind the low relative abundance of fungal RNA in the
mixed RNA samples (Fig. 1C), we performed deep RNA-Seq on control
and Ep-inoculated replicate cDNA libraries of A17 and DZA and gen-
erated an average of 95 million HQ paired-end reads per sample
(Supplementary Table S2). Across sample and within replicate variation
in sequencing depth was<20% indicating uniformity in data genera-
tion, which is a critical requirement for estimation of transcript cov-
erage and normalization. The bioinformatics pipeline used for data
analysis is outlined in Supplementary Fig. S1.

3.2. Assembly of the dual transcriptome and segregation of host and
pathogen transcripts

Genome-guided de novo transcriptome assembly yielded a total of

42,302 transcripts across the four conditions profiled, totaling to an
average transcriptome size of ~42 Mb (Supplementary Table S3). The
average transcript length was ~1 kb and the average N50 contig length
was ~1.5 kb. Expression profiling of the transcriptome identified an
average of ~30,000 transcripts with baseline expression in each of the
four conditions (Supplementary Fig. S2). An investigation into replicate
reproducibility by PCA and unsupervised hierarchical clustering re-
vealed a high degree of correlation between biological replicates
(Supplementary Fig. S3). Collectively, these results suggest that the
assembled transcriptome is highly reliable and a true reflection of po-
sitive measurement.

Based on blastn and blastx alignments, we designated 28,904
(99.2%) transcripts of the dual transcriptome as belonging to the host
(Mt) and 140 (0.5%) as belonging to the pathogen (Ep) (Supplementary
Table S4; see Materials and Methods for details). Blastx analysis re-
vealed that 67% of the host transcripts show similarities to Mt and/or
plant Refseq proteins (Supplementary Datasheet S1). Similarly, 72.4%
of the pathogen transcripts are associated with at least one annotation,
of which 67.4% show sequence similarities to Ascomycete proteins and
46.7% show sequence similarities to E. necator proteins (Supplementary
Table S5). To validate the segregated transcripts, we analyzed sample-

Fig. 1. Powdery mildew disease progression and Ep quantification on resistant (A17) and susceptible (DZA) Mt genotypes. (A) Trypan blue stained images of Ep
isolate Palampur-1 on A17 and DZA leaves at 1, 3 and 5 days' post inoculation (dpi) with an image of representative leaves at 12 dpi. c, conidia; a, appressorium; h,
primary hypha; m, mycelium; cp, conidiophores. Arrows point to infected epidermal cells showing cytoplasmic disorganization and browning (B) The percent of Ep
conidia that reached different developmental stages (i.e. ungerminated, formed an appressorium or formed a colony with primary hypha) at 1 dpi assessed
from>250 conidia from 5 to 6 leaves per genotype. Asterisk indicates values that are significantly different (⁎p < .05 based on Student's t-test) between A17 and
DZA at the respective growth stage. (C) Relative abundance of fungal and plant ribosomal RNA in samples determined by qPCR of Ep ITS relative to Mt ITS. (D)
Expression ofMtPR10 in response to Ep. MtUBQ served as the endogenous control. (E) Basal expression levels ofMtREP1 in A17 and DZA non-inoculated plants; N.D.,
not determined. Data shown are averages± SD of two independent biological replicates. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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wise read mapping statistics. As expected, we found that the vast ma-
jority of HQ reads in control samples mapped to Mt transcripts whereas
the inoculated samples also contained a small percent of reads that
mapped to Ep transcripts, ranging from 0.005% in A17 to 0.02% in DZA
(Supplementary Table S6).

3.3. Differential transcriptional response to Ep infection in resistant and
susceptible Mt

About twice as many DEGs were detected in A17 (1495) compared
to DZA (751) (Fig. 2A). This difference was more evident in the up-
regulated set, with nearly 2.8× more genes induced in A17 (1290)
compared to DZA (452), and less pronounced in the down-regulated set
with 205 genes repressed in A17 compared to 299 in DZA. Majority of
the DEGs were unique to a particular interaction with few genes de-
tected in the up-regulated (290) or down-regulated [26] sets of both
genotypes (Fig. 2B). Within the shared up-regulated gene set, fold
change values were higher in A17 compared to DZA (Supplementary
Datasheet S1).

To validate the RNA-Seq data, we performed qPCR for 15 genes that

were selected based on differential expression in A17 and DZA. As
shown in Fig. 2C, the expression patterns obtained by qPCR paralleled
those obtained through RNA-Seq for most genes, with a Pearson's cor-
relation coefficient of 0.87 (p < .0001).

3.4. Ep-impacted host functional processes during an incompatible
interaction

To delineate the transcriptional changes that occur during in-
compatible and compatible Mt–Ep interactions, we subjected A17 and
DZA DEGs with Mt4.0 v2 IDs to functional enrichment analysis against
the Mt genome as background. GO biological process terms exclusively
enriched in the A17 DEG dataset mainly grouped into five categories:
cell recognition, protein phosphorylation, macromolecule modification,
cellular amino acid metabolism, and phenylpropanoid biosynthesis
(Fig. 3A; Supplementary Datasheet S2). MapMan bins exclusively over-
represented in A17 DEGs include pathways such as signaling and amino
acid/protein synthesis, and protein families such as PR-proteins, glu-
tathione-S-transferases, GCN5-related N acetyltransferases, O-methyl
transferases, myrosinases-lectin-jacalin, peroxidases, cytochrome P450,

Fig. 2. Differential expression analysis of host genes upon Ep
inoculation. (A) Number of differentially expressed genes
(DEGs) in 1 dpi versus non-inoculated control leaves of A17
and DZA. (B) Venn diagrams showing shared and unique up-
(up arrow) and down-regulated (down arrow) genes in A17
and DZA. (C) Validation of selected Mt DEGs upon Ep in-
oculation. Bar plot and inset scatter plot show a comparison of
RNA-Seq and qPCR log2 fold change values obtained for 15
differentially expressed genes at 1 dpi. qPCR values represent
mean log2 fold change values (ddCt± SEM) at 1 dpi com-
pared with 1 d non-inoculated controls from three in-
dependent biological replicate experiments. MtUBQ served as
the endogenous control for normalization. The inset scatter
plot highlights the high correlation between both methods
(r = 0.87). Gene IDs are provided in Supplementary Table S1.
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and ß-1,3 glucan hydrolases (Fig. 3C; Supplementary Datasheet S3).
Notably, all genes classified under the GO and MapMan categories were
up-regulated in A17 in response to Ep.

Genes classified under the cell recognition GO category and
MapMan signaling bin predominantly encode members of different cell
surface-localized RLK families, including WAKs, leucine-rich repeat
(LRR)-RLKs, cysteine-rich-RLKs, lectin-RLKs, and LysM type-RLKs. Genes
classified under the protein phosphorylation GO category include sev-
eral defense-signaling components such as serine/threonine protein ki-
nases, mitogen-activated protein kinase (MAPK) and MAPKK. In addition
to RLKs, the macromolecule modification GO category contains 3 plant
U-box type E3 ubiquitin ligase (PUB) genes: PUB14, Avr9/Cf9 rapidly-
elicited gene PUB20, and PUB23. This GO category also contains 3 genes
encoding subunits of the oligosaccharyl transferase STT3 complex in-
volved in N-glycosylation. The amino acid synthesis GO category and
MapMan bin include genes mainly involved in aromatic and polar
amino acid synthesis. The PR-protein MapMan bin includes several
chitinases and Toll/interleukin-1 receptor (TIR) type NLR genes.

3.5. Ep-impacted host functional processes during a compatible interaction

GO terms exclusively enriched in DZA DEGs include metabolism and
oxidation-reduction process, and enriched MapMan bins include major
carbohydrate metabolism, transport, and cell wall (Figs. 3B & D; Sup-
plementary Datasheets S2-S3). The metabolism and oxidation-reduction
process GO categories is dominated by genes encoding proteins in-
volved in redox reactions such as peroxidases, lipoxygenase, alternative
oxidase, 2OG-Fe (II) oxygenase, ACC oxidase, aldo/keto reductase, and
members of the cytochrome P450 family. A number of these enzymes
are either known to play a direct role in ROS/reactive aldehyde de-
toxification, or involved in the synthesis of secondary metabolites with
antioxidant/antimicrobial properties. For example, genes encoding an
alternative oxidase, known to mitigate ROS accumulation in mi-
tochondria, superoxide dismutase, known to catalyze the dismutation
of superoxide radicals to oxygen and hydrogen peroxide [68], and an
NADP-dependent alkenal double bond reductase, known to detoxify
reactive aldehydes [69], were significantly up-regulated in DZA. The
major carbohydrate metabolism MapMan bin includes genes involved
in starch synthesis and degradation, all of which were down-regulated
only in DZA. The transport bin contains genes encoding phosphate
transporters, a nitrate transporter, zinc transporters, sugar/H+ sym-
porters, ABC transporters, and MATE efflux transporters. Within the cell
wall bin, genes involved in cell wall synthesis and modification such as
cellulose synthases, expansins, polygalacturonases, pectinesterases, xy-
loglucan endotransglucosylase/hydrolases, and fasciclin-like arabinoga-
lactans were exclusively down-regulated in DZA.

3.6. Ep-impacted host processes impacted during incompatible and
compatible interactions

Few GO and MapMan categories were significantly enriched in both
A17 and DZA DEG datasets. These include response to biotic stimulus,
biotic stress, secondary metabolism, protein degradation, photosynth-
esis, and GDSL-motif lipase (Fig. 3; Supplementary Datasheets S2–S3).
The response to biotic stimulus and biotic stress categories in both
datasets are dominated by PR-genes and NLRs, but fewer genes and
lower fold change induction values were detected in DZA compared to
A17. A similar pattern was observed for the secondary metabolism
MapMan bin, which includes genes involved in the isoflavonoid and

lignin biosynthetic pathways. In contrast, a greater number of genes
encoding different types of proteases, components of the ubiquitin
pathway, chlorophyll a/b-binding proteins and GDSL-motif lipases
were down-regulated in DZA compared to A17.

3.7. Ep- impacted transcription factors and enriched cis-acting elements in
co-regulated promoters

Transcriptional regulation plays a central role in the activation or
suppression of expression during pathogen infection and is largely
controlled through transcription factors (TFs) and regulatory cis-ele-
ments present in gene promoters. Notably, ‘Regulation of transcription’
was identified as an enriched MapMan bin in both A17 and DZA DEGs
(Fig. 3). To identify regulatory factors associated with incompatible and
compatible Mt-Ep interactions, we (1) identified TFs with infection-al-
tered expression in A17 and DZA (Table 1) and (2) analyzed the 1-kb
promoters of DEGs for significantly enriched cis-acting regulatory mo-
tifs or TF-binding sites (TFBS) (Table 2; Supplementary Datasheet S4).
We found 61 TFs in A17 and 25 in DZA with significantly altered ex-
pression in response to Ep. Of these, 9 were significantly up-regulated in
both genotypes.

The WRKY family was the largest and the only statistically enriched
TF family in both datasets (Fig. 3); however, differences in the number
and expression of WRKY TFs were observed between A17 and DZA
(Table 1). Nineteen WRKYs were induced in A17 whereas only 6 were
induced in DZA, with fold change values lower in DZA in all cases. In
line with this, the WBOX motif, bound by WRKY TFs, was more strongly
enriched in A17 up-regulated gene promoters compared to DZA
(Table 2). A search for Arabidopsis orthologs of induced MtWRKYs re-
vealed that 9/21 show sequence similarities to AtWRKYs previously
implicated in the regulation of SA biosynthesis and/or signaling
(Table 1). These include AtWRKY75 [70], a positive regulator of SA
biosynthesis, AtWRKY70, AtWRKY54, AtWRKY50, and AtWRKY51,
positive regulators of SA signaling [71–73], and AtWRKY33 and
AtWRKY40, negative regulators of SA-dependent defense responses
[74,75].

The ERF family was the second largest TF family with Ep infection-
altered expression. In general, ERFs were up-regulated in A17 but
down-regulated in DZA. Three MtERFs up-regulated in A17 show si-
milarities to AtERF1 or AtERF59, which are positive regulators of the
JA/ET signaling pathway [76,77]. In contrast, an MtERF
(Medtr4g100450) similar to AtERF5/AtERF6, both known positive reg-
ulators of JA-mediated defense responses [78], was down-regulated in
DZA. Additionally, a homolog of AtERF8, a PCD-inducer [79], was
down-regulated only in DZA.

MYB TFs were significantly impacted by Ep predominantly in A17.
Six MYBs were significantly up-regulated and 3 down-regulated only in
A17. One of the up-regulated MtMYBs is similar to the soybean MYB29,
which is a positive regulator of isoflavonoid biosynthesis [80]. In ac-
cordance with this, the L1DCPAL1 motif bound by MYB TFs and present
in the promoter of the phenylalanine ammonia-lyase (PAL) gene [81] that
encodes the first enzyme of the phenylpropanoid pathway, was strongly
enriched in A17 up-regulated promoters.

C2H2, NAC, GRAS and Trihelix TF family members were either
exclusively up-regulated in A17 or exclusively down-regulated in DZA.
In accordance with this, C2H2-, NAC-, and Trihelix TF-binding motifs
were strongly enriched only in A17 up-regulated promoters. Two C2H2
TFs up-regulated in A17 are similar to AtZAT6, which plays an im-
portant role in H2O2-activated anthocyanin synthesis [82]. A C2H2

Fig. 3. Enriched gene ontology (GO) biological process terms and MapMan bins in A17 and DZA DEGs. (A-B) GO enrichment (p ≤ .05) was performed using
MedicMine (http://medicmine.jcvi.org) and enriched terms with 2 or more genes were summarized using REVIGO semantic analysis to remove redundant GO terms.
Bubble colour indicates the log10 p-value (scale in the upper right-hand corner of each plot); bubble size indicates the number of genes associated with a particular GO
term. (C-D) Enriched MapMan categories or sub-categories (p ≤ .05). Red bar, up-regulated genes; green bar, down-regulated genes. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Table 1
Transcription factors with altered expression at 1 dpi of Ep infection in A17 and/or DZA.

Transcription Factors Arabidopsis thaliana ortholog3 Log2 fold change4 

Mt ID1 TF 
Family2 

ID Gene Name A17 DZA 

Medtr8g044070 AP2 AT3G54320  WRI1 2.9 2.0 
Medtr7g092540 bHLH   1.4 0.5 

Medtr2g039620 bHLH AT5G56960 bHLH 7.9 2.5 
Medtr5g017210 bHLH AT5G67060; AT3G50330  HEC1; HEC2 -3.5 -1.5 
Medtr1g096530 bHLH At2g47270 UPBEAT1 -4.7 -0.7 
Medtr4g070320 bHLH AT4G34530 CIB1 -1.2 -0.8 

Medtr8g067280 bHLH AT1G32640 MYC2 1.0 -2.7 
Medtr1g022495 bZIP AT4G34590 bZIP11 -0.4 1.8 
Medtr4g079500 bZIP AT2G42380; AT3G58120 bZIP34; bZIP61 0.8 -1.8 
Medtr3g102980 C2H2 AT1G27730; AT5G04340 STZ; ZAT6 1.3 -0.4 

Medtr1g018420 C2H2 AT1G27730; AT5G04340 STZ; ZAT6 2.6 0.0 

Medtr1g093095 C2H2 AT1G13290 DOT5 -0.9 -4.1 
Medtr7g100100 C2H2 AT2G37430; AT3G53600 ZAT11; ZAT18 0.9 -1.9 
Medtr1g106730 C2H2   0.7 -1.0 
Medtr5g071070 C3H AT2G40140; AT3G55980 CZF1; SZF1 2.2 0.3 

Medtr4g078660 C3H   -1.7 -1.7 

Medtr8g090205 CAMTA AT2G22300 SR1 1.5 0.0 

Medtr2g013370 Dof   -2.0 -1.8 

Medtr4g109980 Dof AT5G60850 OBP4 -0.6 -1.0 
Medtr7g096830 ERF AT1G06160; AT2G31230 ERF59; ERF15 1.4 1.0 
Medtr5g075570 ERF   1.5 0.3 

Medtr1g069945 ERF AT1G06160; AT2G31230 ERF59; ERF15 1.5 -0.1 

Medtr2g014300 ERF AT1G28360 ERF12 2.1 0.0 

Medtr1g043350 ERF AT3G23240 ERF1 2.3 0.8 

Medtr2g015040 ERF   2.3 -0.1 

Medtr1g074370 ERF   2.9 -0.3 

Medtr7g020980 ERF   -1.3 0.8 

Medtr6g037610 ERF AT5G64750 ABR1 - 3.4 
Medtr5g062700 ERF   -0.8 -1.6 
Medtr4g100450 ERF AT4G17490; AT5G47230 ERF6; ERF5 -0.3 -1.3 
Medtr2g078680 ERF AT1G53170; AT3G15210 ERF8; ERF4 0.4 -1.1 
Medtr2g038720 GATA AT4G26150; AT5G56860 CGA1 -3.0 0.4 

Medtr2g097463 GRAS   1.0 -0.6 

Medtr4g133660 GRAS AT4G17230 SCL13 1.1 -0.8 

Medtr5g094450 GRAS   1.1 1.0 

Medtr4g064160 GRAS AT1G07530; AT2G29060 SCL14 -1.1 -1.7 
Medtr8g469430 HD-ZIP   1.9 0.9 

Medtr5g019650 HD-ZIP AT2G18550; AT4G36740 HB21; HB40 -2.0 -1.2 

Medtr1g101280 HD-ZIP   0.2 -1.5 
Medtr8g105780 HSF AT1G67970 HSFA-8 1.3 0.4 

Medtr5g017470 HSF AT4G36990 HSF4 3.3 1.4 
Medtr7g110830 MYB   1.3 0.8 

(continued on next page)
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Table 1 (continued)

Medtr1g043050 MYB AT1G06180; AT2G31180 MYB13; MYB14 1.5 0.1

Medtr1g076150 MYB AT1G06180; AT2G31180 MYB13; MYB14 1.6 0.4

Medtr1g043080 MYB AT1G06180; AT2G31180 MYB13; MYB14 2.0 0.2

Medtr3g101290 MYB 3.3 0.0

Medtr8g027345 MYB 7.5 2.7
Medtr7g011170 MYB AT3G01140; AT5G15310 MYB106; MYB16 -3.5 -0.9

Medtr4g046737 MYB 4.4 1.8

Medtr6g004250 MYB -3.2 -0.8

Medtr6g092540 MYB AT5G56840 -1.7 -0.1

Medtr4g075980 NAC AT2G17040 ANAC036 1.4 0.0

Medtr2g079990 NAC AT1G52890; AT3G15500 ANAC019; NAC3 1.6 0.6

Medtr5g090970 NAC AT2G43000 ANAC042 2.4 2.7

Medtr4g052620 NAC AT3G44350; AT5G22380 ANA061; NAC090 - -3.2
Medtr8g059170 NAC AT4G27410 RD26 0.7 -1.0
Medtr4g088555 SBP AT2G33810 SPL13 1.5 -0.1

Medtr2g098080 Trihelix 4.7 -1.7

Medtr7g073380 WRKY AT1G66550; AT1G66560 WRKY67; WRKY64 1.2 -0.3

Medtr5g074400 WRKY AT2G38470 WRKY33 1.5 0.1

Medtr8g027860 WRKY 1.9 0.3

Medtr4g082580 WRKY 2.1 0.0

Medtr3g031220 WRKY AT2G38470 WRKY33 2.3 0.8

Medtr7g073430 WRKY AT1G66550; AT1G66560 WRKY67; WRKY64 2.7 0.0

Medtr7g117200 WRKY 2.7 0.0

Medtr3g095040 WRKY AT5G64810 WRKY51 2.8 -0.1

Medtr3g106060 WRKY 2.9 0.9

Medtr3g093830 WRKY AT2G40750; AT3G56400 WRKY54; WRKY70 3.2 0.3

Medtr1g015140 WRKY AT5G26170 WRKY50 3.4 0.8

Medtr3g104750 WRKY AT5G26170 WRKY50 3.5 0.8

Medtr7g028710 WRKY AT5G13080 WRKY75 3.8 1.5
Medtr2g105060 WRKY AT1G80840 WRKY40 4.1 0.3

Medtr8g092010 WRKY AT5G64810 WRKY51 6.1 1.5
Medtr3g090860 WRKY 6.4 0.3

Medtr1g013760 WRKY 6.5 0.8

Medtr2g045360 WRKY 6.7 2.1
Medtr1g013790 WRKY 8.0 2.1
Medtr6g038890 WRKY 0.6 2.0
Medtr4g107970 WRKY AT5G15130 WRKY72 - 2.1

aMt ID as per Mt4.0v2 annotation (http://www.medicagogenome.org/downloads).
bTranscription factor family (TF) based on Plant Transcription Factor Database v3.0 (http://planttfdb.cbi.pku.edu.cn/).
cArabidopsis thaliana ortholog identified through MedicMine (http://medicmine.jcvi.org/medicmine/begin.do). Ortholog description from TAIR10 (https://www.
arabidopsis.org/index.jsp).
dValues in bold represent significant changes in expression (p≤ .05). Red, ≥2-fold up-regulated; green, ≥2-fold down-regulated; yellow, unaltered, −, not detected.
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down-regulated only in DZA is similar to AtZAT11, which was pre-
viously shown to be involved in oxidative stress-induced PCD [83].
Within the NAC family, one of the NACs up-regulated only in A17 is
similar to AtANAC019, an activator of JA-induced defense responses
[84]. A NAC down-regulated only in DZA is similar to AtANAC090,
which acts in concert with AtANAC017 and AtANAC082 to suppress leaf
senescence-promoting processes [85].

A number of bHLH TFs were significantly down-regulated only in
A17. These MtbHLHs show similarities to the Arabidopsis genes
UPBEAT1, HECTATE1, or CIB1, all of which are known to regulate
different developmental processes in Arabidopsis [86], [87], [88]. Fur-
ther, a homolog of AtMYC2, the master regulator of the JA signaling
pathway [89], was significantly down-regulated only in DZA. Con-
sistent with this, the MYCCONSENSUSAT motif was enriched in pro-
moters of DZA down-regulated promoters.

The promoter analysis also identified the GGNCCC motif, bound by
TCP TFs, as one of the most strongly enriched cis-elements in promoters
of A17 and DZA (Table 2). Interestingly, a greater number of up-regu-
lated gene promoters contain this motif in A17 whereas only down-
regulated promoters harbor this motif in DZA. Surprisingly, no TCP TFs
known to bind this element were identified as differentially expressed
in response to Ep.

3.8. Functional annotation of Ep genes and identification of effector
candidates

To validate the identified 140 Ep genes, we amplified a subset of 17
candidate genes from Ep conidial genomic DNA. All 17 genes amplified
from Ep genomic DNA but not from DZA genomic DNA (Supplementary
Fig. S4), confirming that they are bona fide fungal genes. Blast2GO
analysis revealed that GO biological process terms such as translation,
RNA-dependent DNA biosynthetic process, and nucleic acid phospho-
diester bond hydrolysis were the most abundant, followed by DNA
metabolic process, transcription and respiration (Fig. 4A). A search for
functional Pfam protein domains identified ribosomal protein as the
most abundant functional domain.

Candidate Ep effectors (EpEFs) were predicted from proteins having
a genuine start codon based on criteria used to define effectors in other
PM species [90]. Based on these criteria, 5 sequences (EpEF01–05)
ranging in length from 32 to 66 amino acids were identified as effector
candidates (Supplementary Table S7). To increase the effector re-
pertoire, we also included 2 sequences (EpEF06–07) that show simila-
rities to previously predicted effectors from other sequenced PMs. EpEF
sequences were also scanned for the presence of the Y/F/WxC motif,
the only motif reported to be conserved in PM effectors thus far [90].
Only EpEF01 contained a YHC motif, with the motif located within 30
amino acids of the signal peptide.

We used qPCR to study the expression profiles of EpEF genes over
the course of infection on the susceptible host DZA (Fig. 4B). EpEF01
showed a steady increase in expression from 12 to 48 hpi, after which
its expression remained high. EpEF02 showed increased expression at
12 and 120 hpi, corresponding to penetration and asexual reproduction
stages. EpEF03 was induced only during penetration (12 hpi) and re-
mained unchanged or suppressed at all other time points. EpEF05–6
exhibited increased expression between 6 and 24 hpi, corresponding to
the appressorium formation, penetration and primary haustorium for-
mation stages. Unexpectedly, EpEF07 showed reduced expression at all
infection time points compared to 0 hpi.

4. Discussion

This study describes the dual RNA-Seq-based transcriptome pro-
filing of Mt and the pea PM Ep at an early infection time point (1 dpi)
during compatible and incompatible interactions. Analysis of Ep infec-
tion-responsive Mt DEGs revealed a greater degree of transcriptional
reprogramming in A17 compared to DZA. This is consistent with an R

protein-triggered ETI response, which is generally correlated with
massive alterations of the host transcriptome [91]. We validated our
findings by performing qPCR analysis on a subset of Mt genes. Overall,
differential expression values obtained by RNA-Seq and qPCR were
comparable; only 3 genes deviated from the norm: isoflavone synthase,
wall-associated kinase (WAK), and SAUR-like auxin responsive protein. We
speculate that this may be due to the inherent high biological varia-
bility (changes in gene expression that are variable between controlled
measurements) of these particular genes.

To investigate the nature of PM-induced transcriptional changes
associated with resistance/susceptibility, we compared functional terms
enriched in A17 and DZA DEGs. Similar to previous microarray studies
that profiled Mt-Ep interactions at earlier time points [4 and 12 hpi;
[30,32]], we found that genes encoding PR-proteins and phenylpro-
panoid [(iso)flavonoids and lignin] pathway enzymes were induced to a
greater extent in A17 compared to DZA. Further, as reported previously,
our data supports the involvement of the phytohormone SA in both R-
gene and basal resistance against Ep inMt. However, by adopting a dual
RNA-Seq approach and a different infection time point (1 dpi), we
uncovered (1) additional infection-responsive transcriptional changes
during compatible and incompatible interactions, and (2) Ep candidate
effectors that were not identified previously. We mainly focus our dis-
cussion on these novel findings in the following sections.

4.1. R-gene mediated PM resistance correlates with a strong amplification of
PTI signaling

Strikingly, in contrast to previous studies, we found an over-re-
presentation of ETI-inducing NLR and PTI-inducing RLK genes ex-
clusively in the A17 up-regulated data set. Studies on resistance sig-
naling in plants have shown that some NLRs function as sensors of
pathogen effectors or effector activities and initiate immune responses,
while others act as signaling components, contributing to defense relay
and amplification [92]. Therefore, it is possible that an NLR, like
MtREP1, serves as the primary sensor that recognizes the pathogen
signal and initiates ETI, while induction of other NLRs is required to
amplify the resistance response in A17. In addition to NLRs, a number
ofWAK, LysM- and lectin-type RLKs known to activate PTI against fungal
pathogens via recognition of chitin [20] or cell wall fragments [93]
were induced only in A17. This suggests that PTI or basal defense is also
activated to a greater extent during incompatible interactions. Pa-
thogen signals perceived by RLKs and NLRs generally trigger similar
sets of immune responses, such as ROS accumulation, Ca2+ spikes,
MAPK cascades, transcriptional reprogramming and production of
phytohormones, suggesting that PTI and ETI share the same core ma-
chinery to trigger defense [92]. Even though they share a similar fra-
mework, immune signaling responses in ETI are normally amplified and
of a longer duration than they are in PTI. Collectively, our data suggests
that a similar resistance mechanism might operate in A17, where an R-
protein like MtREP1 triggers an ETI-mediated amplification of PTI
signaling. In support of this, in addition to the PAMP/DAMP-perceiving
RLKs, a number of genes encoding early PTI signaling components were
significantly up-regulated only in A17.

4.2. The JA/ET signaling network may contribute positively to ETI against
PM

The SA and jasmonic acid (JA)/ethylene (ET) signaling sectors are
generally antagonistic and important for immunity against biotrophic
and necrotrophic pathogens, respectively [94]. We found that the ex-
pression pattern in DZA generally supports this hypothesis; TFs with
similarities to AtWRKY51 and AtWRKY75, which function as positive
regulators of the SA signaling network, were up-regulated, while a
homolog of AtMYC2, an activator of JA response genes, was down-
regulated. By contrast, in addition to positive regulators of the SA sig-
naling pathway, a number of WRKY, ERF and NAC TFs with similarities
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to Arabidopsis TFs that function as positive regulators of the JA/ET
signaling network, such as WRKY33 [74], WRKY40 [75], ERF1 [76],
ERF59 [77], and ANAC019 [84], were significantly up-regulated only in
A17. This suggests that JA-mediated responses may also contribute to
immunity during incompatible interactions. Interestingly, several stu-
dies have reported that SA and JA accumulate to high levels particu-
larly during ETI [e.g. [95,96]]. This coordinated up-regulation of SA

and JA/ET signaling networks might provide a mechanism by which
plants can use PCD as a major defense mechanism against biotrophic
pathogens without making them vulnerable to necrotrophic pathogens
[95]. Alternatively, the JA/ET signaling network may contribute posi-
tively to immunity by compensating for any pathogen-triggered loss/
perturbation in the SA signaling network [97].

Table 2
Over-represented cis-acting elements or transcription factor-binding sites (TFBS) in promoters of DEGs and interacting TF families. 1 kb upstream promoters of DEGs
were analyzed using the ‘Regulation Prediction’ tool in PlantRegMap v4.0 [53] with p-value cutoff ≤0.05. TFBS were grouped based on their interacting TF family.
Motifs present in> 10 target promoters for at least one data set are shown here. Full analysis is presented in Supplementary Datasheet S4. TFBS motif names were
obtained from PLACE [54].

TFBS PLACE motif name TF known to 
bind TFBS No. of DEGs with TFBS

A17 up A17 
down

DZA 
up

DZA 
down

WBOX WRKY 130 - 21 -

PALINDROMICCBOXGM bZIP 31 - 6 -

- TCP 129 12 - 44

L1DCPAL1 MYB 135 - 63 -

- MYB 165 9 74 20

- MYB - 10 19 -

MBSI MYB - 3 7 17

MYBST1 MYB - 13 - -

- NAC 112 7 - -

- C2H2 70 - - 30

ATHBATCONSENSUS HD-ZIP 25 6 - -

DE1PSPRA2 Trihelix 47 - - -

- CPP 36 15 9

MYCCONSENSUSAT bHLH - - - 18

- bHLH - - - 13

CURECORECR SBP - 8 14 4

HSE HSF - - 12 -

HD WUS-like WOX - - - 16
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4.3. Regulation of growth-defense balance may lead to effective PM
resistance

Defense activation against pathogens often occurs at the expense of
plant growth. Consequently, plants use different strategies to mitigate
this growth-defense tradeoff, such as, temporarily diverting resources
from growth towards defense, controlling the timing and duration in
which the immune response is active, and defense priming [98,99]. As
discussed below, our expression data suggests that some of these me-
chanisms may operate more strongly in A17. In addition to the tran-
scriptional repression of photosynthesis-related genes, an energy-con-
serving response generally observed in response to PM infection [100],
down-regulation of development-related regulators such as HD-ZIP and
bHLHs was observed in A17. Also, homologs of TFs known to regulate

growth-defense transitions in Arabidopsis, such as HSF4 [101] and Tri-
helix [102], were significantly up-regulated only in A17. This suggests
that during incompatible interactions, resources are efficiently diverted
from growth towards immunity. In support of this, our analysis of co-
regulated promoters identified TCP TF-binding motifs as strongly en-
riched in A17 DEG promoters. TCPs are plant-specific TFs, which act at
the interface of plant growth and defense by regulating a myriad of
cellular processes ranging from cell proliferation to immunity
[103,104]. Members of this family positively regulate defense by tar-
geting promoters of defense-related genes, including PR and NLR genes
[105,106]. Interestingly, we found that A17 up-regulated genes car-
rying TCP-binding elements in their promoters are mainly associated
with defense-related processes (Supplementary Table S8).

Continuous activation of defense by PAMPs and DAMPs can also

Fig. 4. Functional enrichment of Ep genes and temporal expression analysis of EpEFs. (A) Top GO terms and protein domains associated with Ep genes. GO biological
process and Pfam domain categories containing ≥2 genes are shown here. (B) In-planta temporal expression profiles of EpEFs determined by qPCR analyses of Ep-
inoculated DZA leaf samples. x axes represent hours' post inoculation (hpi). y axes represent the mean log2 fold change values (ddCt ± SEM) at different time points
of infection (6–120 hpi) compared with 0 hpi from three independent biological replicate experiments. EpTub2 served as the endogenous control for normalization.
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have deleterious effects on plant growth; therefore, tight control over
these signaling events is required to limit spurious activation of defense.
Studies in Arabidopsis have revealed that ubiquitination and N-glyco-
sylation play important roles in regulating immune responses by in-
fluencing RLK abundance and pathogen recognition. For example, the
Arabidopsis E3-ubiquitin ligase PUB23 acts in concert with two other
PUBs to dampen PTI signaling by targeting PRRs for degradation via
ubiquitination [107,108]. Another study showed that the Arabidopsis
EFR receptor kinase lacking a single conserved N-glycosylation site
accumulated to lower levels and lost the ability to bind to its ligand
(bacterial translational elongation factor Tu/elf-18) and mediate li-
gand-induced oxidative burst [109]. We found that homologs of Ara-
bidopsis PUBs and STT3 subunits were up-regulated only in A17, sug-
gesting that post-translational regulation of PRR stability and function
may help regulate the timing and duration of defense signaling [110].

4.4. Suppression of defense signaling, PCD, and cell wall synthesis/
modification correlates with PM susceptibility

One way by which Ep can promote biotrophy is through a general
suppression of pathogen perception and host defense signaling. A recent
review on pathogen effectors revealed that, in terms of molecular
function, NLRs, ubiquitination and kinases make up almost 60% of
fungal effector targets [21]. The fact that fewer Mt genes with these
molecular functions were up-regulated in DZA suggests that these genes
may be targets of Ep effectors. Moreover, enhanced detoxification of
ROS and reactive aldehyde species may be critical to prevent or limit
ROS-induced oxidative damage and PCD in response to the biotrophic
PM pathogen. In line with this, genes encoding enzymes involved in
ROS/reactive aldehyde detoxification were significantly up-regulated
in DZA, whereas homologs of positive regulators of PCD, such as
AtERF8 and AtZAT11, were down-regulated. Further, the down-reg-
ulation of genes encoding proteases and ubiquitin-mediated protein
degradation pathway components, which function in PCD [111], sup-
ports the idea that PCD suppression is integral to Ep susceptibility.

Strengthening of plant cell walls at the sites of attempted fungal
attack through the development of cell wall appositions, called papillae,
is an important aspect of penetration resistance against PMs. A study on
barley-Bgh interactions showed that higher concentrations of callose,
cellulose, and arabinoxylan are present in effective papillae compared
to ineffective papillae [112]. Additional studies have suggested that
AGPs may help strengthen this cell wall barrier by crosslinking with
arabinoxylan [113,114]. Notably, cellulose synthase and AGP-encoding
genes were down-regulated only in DZA, correlating with the weaker
penetration resistance observed during compatible interactions.

4.5. Ep effector candidates and genes as putative pathogenicity factors

Although deep sequencing was performed, the percentage of pa-
thogen reads detected in the infected samples was at the lower end of
the range (~0.02–0.1%) previously reported in other plant-pathogen
dual RNA-Seq studies conducted at similar infection time points [115].
We reasoned that this may be a consequence of low fungus-to-plant
biomass ratio at 1 dpi and/or unavailability of a complete reference
genome for Ep. Nevertheless, 140 Ep transcripts were identified from
which 7 EpEF candidates were predicted. Interestingly, ~66% of these
transcripts were also detected in Ep haustoria enriched from 6 dpi pea
leaves (Supplementary Table S5; [29]). However, the effector candi-
dates identified in this study were not detected in the haustorial sample.
This implies that Ep expresses specific sets of effectors at distinct in-
fection stages and on different hosts (pea versus Mt). Indeed, temporal
expression analysis revealed that EpEFs exhibit infection stage-specific
expression patterns. EpEF03, EpEF05 (similar to Bgh CSEP0051 [116]),
and EpEF06 are expressed early during infection and may therefore
contribute to virulence during the initial stages of colony establishment.
EpEF06 encodes an Egh16H1-like gene that belongs to one of the largest

gene families characterized in Bgh with homologs present in all pa-
thogenic fungi [117]. Bgh Egh16H and its homologs GAS1 and GAS2 in
the rice blast fungus Magnaporthe grisea [118] and Magas1 in the en-
tomopathogenic fungus Metarhizium acridum [119] were previously
reported to be expressed mainly during appressorium formation, pe-
netration and/or haustorium formation. Mutants deleted in GAS1,
GAS2, or Magas1 were defective in penetration and showed reduced
virulence on their respective hosts indicating that Egh16H homologs are
important virulence factors required for pathogenesis. Interestingly, an
Egh16H-like gene was also identified in the Ep haustorial transcriptome
but was predicted to be a secreted non-effector protein [29]. Host in-
duced gene silencing of this gene in leaves of susceptible pea plants via
infiltration of specific double stranded (ds)-RNAs resulted in reduced
pathogen virulence, demonstrating the role of this class of genes in PM
pathogenesis [29].

Sequence wise, EpEF07 is most similar to the G. orontii effector
OEC70. In a previous in vitro effector-interactome study, OEC70 was
shown to interact with 6 Arabidopsis proteins, including a Trihelix TF,
an ERF, a COP9 signalosome subunit, a ubiquitin-like protein and two
TCP TFs [120]. When the functional relevance of these OEC70-inter-
acting host proteins was tested using mutant plants, 3 out of 6 showed
altered PM disease phenotypes either at seedling or adult stages, pro-
viding genetic support for their involvement in plant-PM interactions.
This included a member of the TCP TF family, cis-acting elements for
which were over-represented in promoters of DEGs of both A17 and
DZA. It is possible that EpEF07 may similarly interact withMtTCP TF(s),
and this interaction may impact defense gene expression during Ep-Mt
interactions. Surprisingly, EpEF07 expression was repressed in DZA,
suggesting that Ep may suppress the expression of specific effectors to
evade recognition by the host.

Subcellular localization of effector proteins in plant cells can pro-
vide substantial clues on the molecular and cellular basis of their
virulence activities. Localization prediction tools indicated that EpEF01
and EpEF06 are localized to the plant apoplast. Apoplastic effectors
often tend to be cysteine-rich; the disulfide bridges formed between the
cysteine pairs are known to enhance the stability of these proteins in the
plant apoplast, an environment rich in degradative proteases [121].
Notably, the EpEF01 protein sequence is rich in cysteines, consistent
with its prediction as an apoplastic effector.

In addition to effector candidates, we also identified a few non-ef-
fector Ep genes that may serve as pathogenicity factors. These include
two genes encoding extracellular aspartyl proteases and three genes
encoding heat shock proteins (HSPs): HSP60, HSP70 and HSP90.
Proteases secreted by pathogenic fungi are known to contribute to pa-
thogenesis either by modifying/degrading components of the host de-
fense machinery or by altering effector function via proteolytic clea-
vage [122–124]. Likewise, fungal HSPs are also known to contribute to
virulence. For example, HSP90 was recently shown to play a crucial
role in the virulence of the plant pathogenic fungus Fusarium grami-
nearum [125].

5. Conclusions

In summary, our findings provide novel insights into potential re-
sistance and susceptibility mechanisms employed by Mt against the pea
PM pathogen Ep during an early infection event, and provides an initial
resource for the development of PM resistance in legumes of agronomic
import. The in-planta expressed fungal effector candidates represent a
valuable resource that can be leveraged to identify Ep-specific patho-
genicity factors and significantly improve our current understanding of
the disease.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.ygeno.2019.12.007.
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