
 

Open Peer Review

F1000 Faculty Reviews are written by members of
the prestigious  . They areF1000 Faculty
commissioned and are peer reviewed before
publication to ensure that the final, published version
is comprehensive and accessible. The reviewers
who approved the final version are listed with their
names and affiliations.

Any comments on the article can be found at the
end of the article.

REVIEW

 Recent advances in understanding Japanese encephalitis
[version 1; peer review: 2 approved]
Arup Banerjee , Aarti Tripathi2

Laboratory of Virology, Regional Centre for Biotechnology, Faridabad, Haryana, India
Translational Health Science & Technology Institute, Faridabad, Haryana, India

Abstract
Japanese encephalitis (JE) is a clinical manifestation of the brain
inflammation caused by JE virus (JEV). This virus imparts permanent
neurological damage, thus imposing a heavy burden on public health and
society. Neuro-inflammation is the hallmark of JEV infection. The prolonged
pro-inflammatory response is due primarily to microglial activation, which
eventually leads to severe encephalitis. A continual effort is going on in the
scientific community toward an understanding of cellular and molecular
factors that are involved in JEV neuro-invasion and inflammatory
processes. This review not only gives a comprehensive update on the
recent advances on understanding virus structure and mechanisms of
pathogenesis but also briefly discusses crucial unresolved issues. We also
highlight challenging areas of research that might open new avenues for
controlling virus-induced neuro-inflammation.
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Changing epidemiological patterns of Japanese 
encephalitis virus: a significant health concern
Japanese encephalitis (JE) is a severe manifestation of inflam-
mation in the central nervous system (CNS). JE is caused by 
the mosquito-borne JE virus (JEV). At present, JE is preva-
lent mostly in 24 countries of Southeast Asia and the Western 
Pacific; about 68,000 clinical cases are reported annually, and the 
case fatality rate is 25 to 30%. About 30 to 50% of JE survivors  
have permanent neurological sequelae, imposing a heavy bur-
den on public health and society. Annual incidence of JE 
cases varies by age-group, with children (<15 years) being 
the most affected and more likely to suffer from permanent  
neurological sequelae than adults1.

JEV follows an enzootic cycle for transmission, circulated by 
Culex mosquitoes (Culex tritaeniorhyncus and Culex vishnui) 
and vertebrates. Vertebrates like pigs and horses act as an ampli-
fying host, developing high titres of the virus upon infection, 
while the human is the dead-end host2. Non-vector intra-nasal 
transmission as an alternative route of JEV transmission is evi-
dent in pigs and mice under experimental conditions only3,4  
but still requires verification in field conditions.

Molecular genetic analysis of the JEV genome revealed five  
distinct clusters (G1–G5) and each cluster has a distinct distribu-
tion pattern. However, in recent years, epidemiological studies 
have indicated a marked change in the distribution of different 
JEV genotypes in endemic areas. JEV G1 has gradually replaced 
G3, the dominant genotype in the epidemic areas in Asia. On 
the other hand, G3 has spread from Asia to Europe and recently  
in Africa5. Even JEV G2 and G5, which were reported in  
Malaysia, exhibited significant geographical distribution as well6.  
Increase in travel due to trade and tourism across the globe, 
along with climate change, have impacted hugely on the expan-
sion of JEV incidence in a different part of the world. Thus, 
the changing geographic distribution of JEV genotypes and  
the complications arising because of JEV infection are not 
only questions of concern to the scientific community but also  
pose public health issues.

Viral structure: critical determinants of virulence and 
stability
JEV has a single-stranded positive-sense RNA genome with 
an enveloped capsid. The genome consists of a single 10.5-kb 
open reading frame (ORF) flanked by 5′ and 3′ untranslated 
regions (UTRs). The genome encodes a polyprotein precur-
sor, which is co- or post-translationally cleaved by host and 
viral proteases into 10 different functionally active proteins:  
structural and non-structural (NS). Structural proteins include 
precursor of M (prM) (non-glycosylated), glycosylated envelope  
(E) protein, and capsid C protein, whereas NS proteins include 
NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5. Struc-
tural proteins are required for virus entry and virion formation, 
whereas NS proteins are necessary for host invasion and viral 
replication. Recently, Wang and colleagues reported the three- 
dimensional structure of JEV and identified structural elements 
that modulate stability and virulence7. The near-atomic (4.3-Å)  
structure of JEV clearly defines an unusual “hole” on the 

viral surface, and a distinct amino acid motif represents a  
receptor-binding site for JEV. Especially, Glu138 of E, which maps 
near the “holes”, is essential for binding to neuroblastoma cells. 
Also, the introduction of the I36F mutation on JEV membrane (M) 
protein confers viral attenuation and strongly impairs virus egress 
in mammalian cells8.

Among the NS proteins, NS1 plays a role in viral replication.  
Structural study of the C-terminal domain of NS1 revealed 
extensive loop flexibility on the exterior of the protein, which 
may allow interactions with multiple host proteins, thus,  
governing host-pathogen interactions9. The transmembrane 
domains of NS2B support both viral replication and particle  
formation. Several host factors that interact with viral pro-
teins and also support viral replication have been identified. 
For example, TRIM52, members of tripartite motif-containing  
(TRIM) protein 52 and signal peptidase complex subunit 1  
(SPCS1), were reported to interact with transmembrane 
domains of NS2A and NS2B, respectively, and influence 
the post-translational processing of JEV proteins and virion  
assembly10,11. Apart from RNA-dependent RNA polymerase 
(RdRp) activity, a novel function of NS5 protein in viral patho-
genesis was reported. JEV NS5 interacts with mitochondrial tri- 
functional protein (MTP) and impairs long-chain fatty acid 
(LCFA) metabolism12. Impaired LCFA biosynthesis can trigger 
proinflammatory cytokine release and contributes towards  
viral pathogenesis.

Peripheral immune evasion: “camouflage” and 
“sabotage” mechanism
Following ingress of the virus through a mosquito bite, JEV 
replicates in the skin and local lymph nodes, leading to a tran-
sient low viremia in humans. During the incubation period, 
JEV replicates primarily in monocytes/macrophages and den-
dritic cells (DCs)13. The infected cells then transmigrate from 
the periphery to the CNS, leading to inflammation in the brain14. 
JEV must escape immune surveillance at the periphery until the 
necessary alterations occur at the blood–brain barrier (BBB).  
Several escaping mechanisms, including interference of viral 
antigenic peptide presentation through major histocompat-
ibility complex (MHC) and interference in the interferon path-
way, had been reported earlier15–19. A recent study suggested 
an enhancement in myeloid-derived suppressor cell (MDSC) 
populations during JEV infection20. These cells inhibit T  
follicular helper cell–mediated immune response during JEV  
infection, subsequently impairing humoral immunity, which  
facilitates the progression of the disease in a mouse model20.

DCs are antigen-presenting cells that bridge the innate and adap-
tive immune responses during viral infection. CD11b+Ly-6Chi  
monocytes dampen the immune-privileged CNS significantly. 
A recently published study21 on a mouse model suggests 
that CD11chi DC promotes an imbalance in the infiltration of  
IL-17+Th17 to Foxp3+ regulatory T (Treg) cells and Ly-6Chi to 
Ly-6Clo monocytes in the CNS and promotes JE progression21,22.  
A contradictory role by T cells in mouse models of JE is  
evident. Some investigators found no role for T cells23,24 and  
others find a partially protective part23,24, whereas a recent 
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report suggested complete protection against JEV25. All of 
these reports indicate that JEV can infect and induce functional 
impairment of peripheral immune responses, facilitating viral  
survival and dissemination in the body.

Neuro-invasion at the blood–brain barrier: Trojan 
horse or specific mechanism?
The CNS is segregated from peripheral tissues by the tight  
barrier called the BBB. Therefore, the breaching of the BBB 
is an essential event for CNS invasion. However, CNS viral  
invasions may not necessarily require initial BBB breaching. 
A study in the mouse model demonstrated that a Trojan horse 
mechanism mediated virus entry in the brain without disturbing  
the tight junction (TJ) proteins on the BBB. But, as the virus 
replicates in the brain cells, the activated microglia triggers 
inflammatory cytokines and chemokines that later cause BBB 
disruption26. However, another school of thought directly  
supports BBB breaching as a viral entry mechanism into the  
CNS27,28.

A very recent study demonstrated the involvement of the mast 
cells (MCs) in the BBB disruption process29. MCs are the 
hematopoietic myeloid lineage resident immune cells in the 
CNS and are located near the BBB and the neurovascular unit. 
JEV infection activates MCs, allowing the enhanced release 
of MC-specific protease, chymase, which in turn causes BBB  
leakage and facilitates virus entry into the brain29.

Mechanism of viral invasion and neuropathogenesis
In recent years, remarkable progress has been made in under-
standing the cellular components required for JEV entry. 
Apart from the CNS, the virus has been isolated from different 
organs of infected mice (that is, kidney, liver, and spleen), 
indicating that JEV also infects peripheral tissues30,31. Thus, 
JEV probably uses multiple cellular proteins and cell surface  
receptors to enter the cells. The structure of the JEV E pro-
tein contains an immunoglobulin-like E protein domain III 
(ED3), which has been hypothesized to interact with receptor- 
binding proteins32. Several proteins (for example, HSP70, vimen-
tin, laminin receptor, CD4, α5β3 integrin, and DC-SIGN) that 
interact with JEV E protein and play a vital role in JEV entry have 
been identified33. Recently, a cellular protein, glucose-regulated  
protein 78 (GRP78), was identified as a cognate receptor for 
JEV in mammalian cells and plays a dual role in virus entry 
and replication34. Another recent publication demonstrated 
PLVAP and GKN3 receptor proteins as critical host factors 
that govern JEV internalization into neurons35. In the brain, the  
dopaminergic neuron-rich thalamus and midbrain are highly 
susceptible to JEV infection. It is now reported that the  
JEV specifically uses dopamine D2 receptor-phospholipase 
C to infect dopaminergic neuronal cells in human36. The  
T-cell immunoglobulin and mucin domain 1 (TIM-1), a type I  
transmembrane glycoprotein, can act as an entry co-factor and  
significantly promotes JEV infection in non-neuronal cells37.

It is interesting to note that, depending on the type of infected  
cells, JEV can be internalized into host cells via clathrin- 
dependent or clathrin-independent pathways38. As compared 

with non-neuronal cells, neuronal cells support better viral  
replication. However, it is not clear whether viral entry through 
a clathrin-independent pathway in neuronal cells confers  
any advantage to establish infection in neuronal cells.

An essential aspect of JEV pathogenesis is rapid course of infec-
tion upon viral invasion in the CNS, indicating that the JEV 
infection develops a strategy to overcome the initial innate 
immune barrier. One interesting observation, as reported in39, 
described JEV inducing activation of regulated IRE1-dependent  
decay pathway which selectively degrades host target tran-
script without affecting viral RNA, thus facilitating viral  
replication in mouse neuronal cells. Several host factors, includ-
ing TRIM21 and activating transcription factor 3 (ATF3), have 
been reported to modulate cellular antiviral signalling and 
autophagy in JEV infected cells18,19. Autophagy is an important 
phenomenon induced under stressed conditions and promotes 
cell survival. However, in the context of JEV, the virus exploits 
autophagy. Autophagy was found to be functional during 
early stages of infection, probably induced as part of antiviral 
response. However, dysfunction in autophagy as indicated in  
blocking of autophagosome maturation was evident as infec-
tion progressed. This resulted in increased accumulation of 
misfolded protein40, which may contribute to the development 
of neurological symptoms. The long term neurological disor-
der may develop due to the inability of JEV infected neural  
stem/progenitor cells to differentiate into mature neurons. It was 
recently reported that JEV infection evoked prolonged endo-
plasmic reticulum (ER) stress through ER resident chaperone 
GRP78, mitochondrial protein Prohibitin and heterogene-
ous nuclear ribonucleoprotein hnRNPC (C1/C2) and favoured  
neuronal stem cells apoptosis39,41, thus contributing significantly  
towards the development of pathogenesis.

Microglial activation: a friend or foe?
Neuro-inflammation is the hallmark of JEV infection. JEV  
differentially modulates the induction of multiple pro-inflammatory 
mediators in human microglial cell lines42,43. Human microglia 
also support JEV replication. JEV can persist in microglia 
for up to 10 days and is capable of transmitting the virus to  
susceptible cells in a contact-dependent manner. Thus, infected 
microglia may act as a virus reservoir in the brain44. Microglia  
play a critical role in neuronal pathologies. Depending upon 
stimuli, the consequence may be pro-inflammatory (M1) or 
anti-inflammatory (M2), resulting in neurotoxic or neuroprotec-
tive function. An early phase of microglial activation is neces-
sary for the effective removal of infectious agents. However, 
prolonged microglial activation leads to the overproduction of 
pro-inflammatory mediators, which might override an initial  
beneficial effect45. Recently, glutamate-mediated neurotoxicity 
was reported as a pathogenic event in JEV, mediated primarily 
by the N-methyl-D-aspartate receptor (NMDAR), resulting 
in an aberrant Ca2+ influx. Excessive Ca2+ flow induces mitochon-
drial dysfunction, leading to neuronal damage46.

Apart from the release of the inflammatory milieu in response 
to JEV infection, change in microRNA (miRNA) profile has 
been reported extensively in the brain, and modulation of 
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many of these miRNAs affects viral replication and consequent  
neuro-inflammation47–59.

However, until recently, it was not clear whether micro-
glial cell–derived secreted miRNAs could influence neuronal 
fate. Microglial cells communicate with neighbouring cells via 
secreted extracellular vesicles (EVs) called exosomes60. In 
the CNS, cross-talk between glia and neurons is crucial for 
a variety of biological functions60. It is now established that  
inflammation in microglia leads to release of a distinct popu-
lation of EVs. These EVs may contain several biologically 
active molecules (miRNAs and proteins), and transfer of 
those molecules to naïve neuronal cells may alter biological  
functions60,61. Although the role of EVs is well studied in diverse 
types of neurodegenerative disease, their role in JEV infec-
tion and pathogenesis remains unexplored. A recent study 
reported the extracellular release of let-7a and let-7b (let-7a/b)  
via EVs from activated microglia in response to JEV infec-
tion, and transfer of such EVs to neurons, causes neuronal  
apoptosis via caspase activation62. That study unravels a unique  
role of EVs in mediating pathogenesis in the brain62.

Anti-inflammatory drugs in the clinical setting: 
challenges and opportunities
Despite significant advances in our understanding of JE patho-
genesis, the clinical development of compounds for treatment in 
humans is lagging. Although numerous compounds that have 
anti-JEV activity are available (reviewed in 63,64), only four 
clinical trials against JE have been conducted in the past 10 
years. Most of the compounds that were tested previously for 
JE in mouse models were administered either at the time of or  
shortly after JEV infection (that is, well before the development 
of symptoms)65,66. Even in a recently published study, AMG487, 
which inhibits receptor CXCR3, was administered in mice 
12 hours before JEV infection intraperitoneally and exhibited  
significant improvement on the survival of JEV infected mice. 
As the drug was given before JEV infection, the virus was most 
likely cleared from the peripheral sites before it reached the  
brain67. Also, manipulation of pro-inflammatory responses by 
specific drugs has also been tested. Minocycline was shown 
to be effective in mouse models as well as in patients, espe-
cially those who survive the initial days in hospital after  
onset of symptoms68,69, whereas etanercept, which blocks 
tumour necrosis factor alpha (TNFα) receptor, administered 
at days 3 and 5 after infection70 could significantly improve  
survival of JEV-infected mice70.

Apart from new drug discovery, which will take a long time 
to reach clinics, screening of US Food and Drug Administra-
tion (FDA)–approved drugs for antiviral activity against JEV 
will probably be a better option71. Recently, FDA-approved 
drug library screening against JEV identified manidipine, 
as a potential JEV replication inhibitor in mouse models.  
Researchers also used a systems biology approach to iden-
tify potentially antiviral drugs72. A proteasome inhibitor drug,  
bortezomib, was thus discovered, showing a significant  

reduction in JEV-induced lethality in mice by lessening brain  
damage caused by JEV infection.

Despite the advances in biological research, the CNS targeted 
therapy has been hindered by the reduced efficacy of molecules 
to cross the BBB73–75. Thus, there is an urgent need for a  
different approach to helping drug delivery across the BBB.

A cell-free therapeutic effect using secreted exosomes from mes-
enchymal stem cells (MSCs) recently showed promise against 
neurodegenerative diseases76. Recent reports have suggested 
that MSC exosomes (MSC-Ex) can deliver exogenous miRNAs 
to neural cells and induce their differentiation, providing a 
solid basis for using MSC-Ex as a delivery tool to the brain77,78.  
MSCs can migrate to the site of injury and reduce inflammation. 
Also, MSCs alter BBB integrity by promoting the expression 
of vascular endothelial growth factor and angiogenesis79,80. 
In the context of JEV infection, MSC treatment itself has 
a beneficial effect in terms of improved recovery rate from  
JE in a mouse model. Interestingly, MSCs can reprogram 
microglia switching toward the neuroprotective state, leading  
to improved neuron survival81.

However, the problem with the MSC-based therapy is that 
the stem cells often get trapped, causing obstruction of small  
vessels. It is now believed that the MSC-mediated effect can be 
mimicked by the exosomes secreted from these cells. These 
exosomes are very small, have low immunogenicity, and can 
easily reach the target site without creating the obstructive 
vascular effect. Thus, a cell-free therapeutic approach using  
MSC-derived exosomes needs to be tested against a JEV-
infected animal models. Given the enormous potential of 
MSC-derived exosomes, more research is warranted in these  
areas.

Vaccines
Given the importance of JEV burden in endemic countries, con-
tinual efforts have been made in the development of a vaccine 
against JEV. Currently, three different categories of licensed 
vaccines (mouse brain-derived inactivated, live attenuated, and 
genetically engineered chimeric) are available with varying 
efficacy (as reviewed in 82). Although SA14-14-2 live  
attenuated vaccine (LAV) is widely tested and observed 
excellent efficiency in China, Nepal, and South Korea, the 
effectiveness of the same vaccine was found to be lower 
in an Indian adult population83. The reasons for the low  
efficacy of SA14-14-2 LAV are not clear. Several factors, 
including genetic background, inaccurate reporting of cover-
age, possible deviation from standardized assays, and absence 
of comparison with sera from other countries, may account 
for it. The latest vaccine, JENVAC, a vero cell–derived inacti-
vated JE vaccine developed by using an Indian strain, proved  
durable and crossed protectivity against all commonly circulated 
JEV genotypes (I, II, III, and IV)84. Therefore, advances in the 
availability and development of JEV vaccines have invigorated  
the scenario for JE control.
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Conclusions and future perspectives
JEV is a significant public health problem. Protection against 
JEV is possible through vaccination. Despite the availability of 
an effective vaccine against JEV, outbreaks of JE are reported 
in regular intervals from endemic regions. This might be due 
to a combination of factors, including increased reporting of 
JE cases or improper diagnosis, deviation of vaccines from a 
cold chain during storage and delivery in remote areas, and the  
emergence of a new strain. All of the vaccines require con-
tinuous refrigeration to maintain their potency. The thermal  
instability of vaccines has become a significant obstacle to  
vaccination programs, especially in remote areas. Thus, more  
research is warranted in the field of development of robust  
vaccine formulations with improved thermostability and immu-
nogenicity. Given the significant change in the global risk of 
JE, more multi-centred, epidemiological, and post-vaccination  
sero-surveillance studies are desired.

In parallel, a continual search for new effective drugs is 
needed. It should be noted that 30 to 50% of survivors develop  

significant long-term neurological sequelae. Thus, a combination 
of drugs having antiviral and neurogenesis properties is  
probably a good option to treat JE.

So far, several receptors have been identified for JEV. The  
compounds that block entry receptors are less likely to be 
the right candidate for treatment since blocking of the single 
receptor may not be able to inhibit viral infection completely. 
Instead, compounds that are already approved for human use  
and show anti-inflammatory or anti-JE activity in animal models 
could be tested in pilot scale without further delay.

So far, JE research has progressed significantly in terms of 
the advancement of our understanding of virus structure 
and mechanisms of neurovirulence and pathogenesis. Fur-
ther clinical and applied research is warranted for the devel-
opment of more sensitive diagnostic tools and therapeutics 
for better managing viral encephalitis at the early stage of  
infection.
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